Learning from a Mixture of Information Sources Nicole Immorlica¹ Brendan Lucier¹ Clayton Thomas¹ Ruqing Xu² ¹Microsoft Research ²Cornell University Paper er ## **Research Question** Whether a piece of information—such as a product review, a news article, or a medical recommendation—is informative depends not only on its **content** but on **who produces it**. While technologies can summarize large data at low costs, the data **source** is often lost. How does the value of knowing a signal's source compare with the ability to process more samples? ## Model in the Two-signal, No-fake-data Setting* - $\Theta = \{0, 1\}$ binary states endowed with a uniform prior. - $\Omega = \{0, 1\}$ binary realization space. $\omega \in \Omega$ is a signal realization. - A signaling scheme π is a pair (p_{00}, p_{11}) , where $p_{\theta\omega} = \pi(\omega \mid \theta)$. \mathcal{P} is the domain of feasible signaling schemes. - In our main result, we focus on the domain of "no-fake-data" signaling schemes $\mathcal{P}_{\neg} = \{(p_{00}, p_{11}) \mid p_{00} + p_{11} \geq 1\}.$ Table 1. Binary signaling scheme Figure 1. \mathcal{P}_{\neg} domain **Learning:** Nature draws a state $\theta \in \Theta$ according to the uniform prior. The decision maker learns about the state from one or more signaling schemes repeatedly drawn from a **distribution** Π over the domain \mathcal{P} . Each time, nature draws a signaling scheme $\pi \sim \Pi$, and then a signal realization $\omega \sim \pi(\cdot \mid \theta)$. **Source-aware signal** $A(\Pi)$: The decision maker learns the tuple (π, ω) , i.e., the signaling scheme and a realization from it. **Source-blind signal** $B(\Pi)$: Nature draws θ, π , and ω exactly as before, but the decision maker only learns ω and not π . ## Source-aware and Source-blind Learning* Proposition 1 (Source-blind learners learns the mean signal). For any distribution of signaling schemes $\Pi \in \Delta(\mathcal{P})$, we have that $B(\Pi)$ is equivalent to the "mean signal" $\overline{\pi} = \mathbb{E}[\Pi]$. Proposition 2 (Source-aware learners are risk-loving in information). For Π_s , $\Pi \in \Delta(\mathcal{P})$, suppose Π_s is a mean-preserving spread of Π . Then, $A(\Pi_s)$ Blackwell dominates $A(\Pi)$. Figure 3. Proposition 2 ## **Over-provisioning Theorem** How much more informative is $A(\Pi)$ than $B(\Pi)$? We put an upper bound on the the dominance ratio $A(\Pi)/B(\Pi)$, as introduced in [2] (see Technical References). Theorem 1 (Over-provisioning). Let $\Pi \in \Delta(\mathcal{P}_{\neg})$ be any distribution of signaling schemes with the average signal $\mathbb{E}\left[\Pi\right]=(x,y)$. If the average signal is ε -away from being completely uninformative, i.e., $x+y\geq 1+\varepsilon$ for some $\varepsilon>0$, then $A(\Pi)/B(\Pi)$ is at most $\frac{2\log(1-\varepsilon)}{\log(1-\varepsilon^2)}=O(1/\varepsilon)$. **Interpretation:** If the average signal is not too uninformative, then for any decision problem, a source-blind learner with access to a few times, i.e., $O(1/\varepsilon)$, more signals will outperform a source-aware learner. Figure 4. Simulated dominance ratio Figure 5. Analytical upper bound ### **Technical References** #### **Blackwell Experiments** **Definition [Distribution over posteriors]**. $\tau_{\pi} \in \Delta(\Delta(\Theta))$ is the distribution over posterior beliefs generated by the signaling scheme π . In binary states, $\tau_{\pi} \in \Delta([0,1])$. **Definition [Mean-preserving spread in** \mathbb{R}^m]. For random variables X_1 and X_2 in $\Delta(\mathbb{R}^m)$, we say X_2 is a mean-preserving spread of X_1 if there exists a spread function $s: \mathbb{R}^m \to \Delta(\mathbb{R}^m)$ from X_1 to X_2 such that: - (1) For all t in the support of X_1 , we have $\mathbb{E}[s(t)] = t$. - (2) If we draw $z \sim X_1$ and then $y \sim s(z)$, then y is equal in distribution to X_2 . **Theorem** [1]. Let $P:\Theta\to\Delta(\Omega)$ and $Q:\Theta\to\Delta(\Xi)$ be two signaling schemes with state space Θ and realization spaces Ω and Ξ . The following statements are equivalent: - (i) The posterior distribution τ_P is a mean-preserving spread of τ_Q . - (ii) For every decision problem with state space Θ , any Bayesian decision maker can achieve weakly higher expected utility under P than under Q. - (iii) Q is a garbling of P. In this case, we say that P Blackwell dominates Q, denoted by $P \succeq Q$. #### **Dominance Ratio** **Definition** [2]. The **dominance ratio** of two signaling schemes P and Q is defined as: $$P/Q = \sup\left\{\frac{m}{n}: P^{\otimes n} \succeq Q^{\otimes m}\right\}$$ where $P^{\otimes n}$ means observing n independent realizations from the signaling scheme P. Intuitively, a dominance ratio of r suggests that P will be at least r times as informative as Q in large samples. #### References *See paper for a model of finite state and signal spaces and Proposition 1 and 2 in the general setting. - [1] David Blackwell. Equivalent comparisons of experiments. *The annals of mathematical statistics*, pages 265–272, 1953. - [2] Xiaosheng Mu, Luciano Pomatto, Philipp Strack, and Omer Tamuz. From blackwell dominance in large samples to rényi divergences and back again. *Econometrica*, 89(1):475–506, 2021.