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Research Question

Whether a piece of information—such as a product review, a news ar-

ticle, or a medical recommendation—is informative depends not only

on its content but on who produces it. While technologies can sum-

marize large data at low costs, the data source is often lost.

How does the value of knowing a signal’s source compare with the

ability to process more samples?

Model in the Two-signal, No-fake-data Setting∗

Θ = {0, 1} binary states endowed with a uniform prior.

Ω = {0, 1} binary realization space. ω ∈ Ω is a signal realization.

A signaling scheme π is a pair (p00, p11), where pθω = π(ω | θ). P is

the domain of feasible signaling schemes.

In our main result, we focus on the domain of “no-fake-data”

signaling schemes P = {(p00, p11) | p00 + p11 ≥ 1}.

Signal space Ω 0 1

State space Θ
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Table 1. Binary signaling scheme
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Figure 1. P domain

Learning: Nature draws a state θ ∈ Θ according to the uniform prior.

The decision maker learns about the state from one or more signaling

schemes repeatedly drawn from a distribution Π over the domain P .

Each time, nature draws a signaling scheme π ∼ Π, and then a signal

realization ω ∼ π(· | θ).

Source-aware signal A(Π): The decision maker learns the tuple

(π, ω), i.e., the signaling scheme and a realization from it.

Source-blind signal B(Π): Nature draws θ, π, and ω exactly as be-

fore, but the decision maker only learns ω and not π.

Source-aware and Source-blind Learning∗

Proposition 1 (Source-blind learners learns themean signal). For any distribution

of signaling schemes Π ∈ ∆(P), we have that B(Π) is equivalent to the “mean

signal” π = E [Π].
Proposition 2 (Source-aware learners are risk-loving in information). For Πs, Π ∈
∆(P), suppose Πs is a mean-preserving spread of Π. Then, A(Πs) Blackwell dom-

inates A(Π).
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Figure 3. Proposition 2

Over-provisioning Theorem

How much more informative is A(Π) than B(Π)? We put an upper bound on the

the dominance ratio A(Π)/B(Π), as introduced in [2] (see Technical References).

Theorem 1 (Over-provisioning). Let Π ∈ ∆(P ) be any distribution of signaling

schemes with the average signal E [Π] = (x, y). If the average signal is ε-away
from being completely uninformative, i.e., x + y ≥ 1 + ε for some ε > 0, then
A(Π)/B(Π) is at most

2 log(1−ε)
log(1−ε2) = O(1/ε).

Interpretation: If the average signal is not too uninformative, then for any deci-

sion problem, a source-blind learner with access to a few times, i.e., O(1/ε), more

signals will outperform a source-aware learner.

Figure 4. Simulated dominance ratio Figure 5. Analytical upper bound

Technical References

Blackwell Experiments

Definition [Distribution over posteriors]. τπ ∈ ∆(∆(Θ)) is the dis-

tribution over posterior beliefs generated by the signaling scheme

π. In binary states, τπ ∈ ∆([0, 1]).
Definition [Mean-preserving spread in Rm]. For random variables

X1 and X2 in ∆(Rm), we say X2 is a mean-preserving spread of X1 if

there exists a spread function s : Rm → ∆(Rm) from X1 to X2 such

that:

(1) For all t in the support of X1, we have E [s(t)] = t.

(2) If we draw z ∼ X1 and then y ∼ s(z), then y is equal in

distribution to X2.

Theorem [1]. Let P : Θ → ∆(Ω) and Q : Θ → ∆(Ξ) be two

signaling schemes with state space Θ and realization spaces Ω and

Ξ. The following statements are equivalent:

(i) The posterior distribution τP is a mean-preserving spread of τQ.

(ii) For every decision problem with state space Θ, any Bayesian
decision maker can achieve weakly higher expected utility

under P than under Q.

(iii) Q is a garbling of P .

In this case, we say that P Blackwell dominates Q, denoted by

P � Q.

Dominance Ratio

Definition [2]. The dominance ratio of two signaling schemes P
and Q is defined as:

P/Q = sup
{m

n
: P ⊗n � Q⊗m

}
where P ⊗n means observing n independent realizations from the

signaling scheme P . Intuitively, a dominance ratio of r suggests

that P will be at least r times as informative as Q in large samples.
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