
ECON 6110, Microeconomic Theory III Section 1 Take-home

TA: Ruqing Xu January 24, 2025

1 Proof of Nash’s Theorem (1950)

Before we prove Nash’s Theorem, we provide a couple of the needed background definitions.

We omit the required definitions of correspondence, closed set, compact set, and convex set;

we should all remember these from ECON 6170:

Definition 1: A fixed point of the correspondence ϕ : Z ⇒ Z is an element z ∈ Z such that

z ∈ ϕ(z).

Definition 2: A correspondence ϕ : W ⇒ Z has a closed graph if for all sequences of

elements wn ∈ W and zn ∈ Z for which zn ∈ ϕ(wn) for all n, wn → w, and zn → z, we have

that z ∈ ϕ(w).

Lemma (Kakutani’s Fixed Point Theorem): For a correspondence ϕ : Z ⇒ Z, the

following conditions are sufficient to guarantee that ϕ(·) has a fixed point:

1. Z is a compact, convex, nonempty subset of a finite dimensional Euclidean space.

2. ϕ(z) ̸= ∅ for all z ∈ Z.

3. ϕ(z) is convex for all z ∈ Z.

4. ϕ(·) has a closed graph (or ϕ(·) is upper hemicontinuous).

Proof: Google it.1 ■

Theorem (Nash’s Theorem): Every finite game has a mixed strategy Nash equilibrium.

In class, Prof. Battaglini proved the theorem in two steps. First, he proved an intermediate

theorem that gives another set of conditions on the set of strategies and utility functions

1The proof of Kakutani’s fixed point theorem is rather involved and will not be covered here. For those

of you who are interested in learning the theorem, I recommend an exposition written by Younggeun Yoo of

the University of Chicago; you can find it via Google.
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that would imply the conditions of the Kakutani’s theorem (which would then imply there

is a fixed point). Then, he verifies that if we allow for mixed strategies, the conditions of the

intermediate theorem indeed hold.

Here we combine the two steps. We will directly verify the conditions of the Kakutani’s

theorem one by one using notations of a game.

Proof: Consider a finite game with N players and a finite action space A = ΠN
i=1Ai. Each

player’s set of mixed strategies is ∆(Ai). Define the best response correspondence

Bi(α−i) = argmaxαi∈∆(Ai)
Ui(αi, α−i). (*)

Notice that Bi is player i’s best response correspondence over the set of all profiles of mixed

strategies played by the other players. With this, we define

B(α) = B1(α−1)× ...×Bn(α−n).

Note that

B : ∆(A1)× ...×∆(An) ⇒ ∆(A1)× ...×∆(An)

In words, B(·) is a correspondence that maps profiles of mixed strategies to profiles of mixed

strategies as best responses. As such, any fixed point of B(·) is a Nash Equilibrium, so if we

can prove that all fours conditions of Kakutani’s fixed point theorem apply to B(·), we are

done. Let us take each of the four conditions in turn.

Condition 1: Let |Ai| = k a finite number. The set ∆(Ai) is just the probability simplex

of dimension k − 1. We should have learned in ECON 6170 that this set is compact, con-

vex, and nonempty. Since the finite product of compact sets is compact, the finite product

of convex sets is convex, and the product of non-empty sets is nonempty, we have that

∆(A1) × ... ×∆(An) is compact, convex, and nonempty. Furthermore, it resides in a finite

dimensional Euclidean space on account of the facts that the probability simplex is a Eu-

clidean subset and our game is finite.

Condition 2: First, observe that for any fixed α−i, the expected utility of player i using

mixed strategy αi is

Ui(αi, α−i) =
∑
ai

Ui(ai, α−i)αi(ai)
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which is the dot product of αi and another vector, and thus is linear in αi. Thus, it is con-

tinuous over ∆(Ai). Furthermore, as was mentioned previously, ∆(Ai) is compact. As such,

we can apply the Wierstrass theorem to determine that a solution to the maximization prob-

lem (*) exists. Thus, Bi(·) is nonempty over its domain, so B(·) is nonempty over its domain.

Condition 3: For any i and α−i, let βi and β′
i be any two probability distributions over i’s

pure strategies such that βi, β
′
i ∈ Bi(α−i). By definition, βi and β′

i are both best responses

by i to the profile of mixed strategies α−i. Thus, by the indifference condition for mixed

strategies, i is indifferent between all pure strategies in the set

S = support(βi) ∪ support(β′
i),

and thus indifferent to all mixed strategies with support S. Since for any θ ∈ (0, 1) the mixed

strategy θβi + (1− θ)β′
i has support S, we have that i is indifferent between θβi + (1− θ)β′

i

and βi, so

θβi + (1− θ)β′
i ∈ Bi(α−i).

This proves that Bi(·) is convex over its domain, so B(·) is convex over its domain.

Condition 4: Define sequences (αt
i, α

t
−i) → (αi, α−i) with αt

i ∈ Bi(α
t
−i) for all t. Then,

suppose towards a contradiction that αi /∈ Bi(α−i). Thus, ∃α̃i and ϵ > 0 such that

Ui(α̃i, α−i) ≥ Ui(αi, α−i) + ϵ.

We next show that α̃i is a better response for αt
−i for some t than αt

i, and thus contradicts

αt
i ∈ Bi(α

t
−i).

For sufficiently large t,

Ui(α̃i, α
t
−i) ≥ Ui(α̃i, α−i)−

ϵ

2
(1)

≥ Ui(αi, α−i) + ϵ− ϵ

2
(2)

≥ Ui(α
t
i, α

t
−i)−

ϵ

4
+

ϵ

2
(3)

= Ui(α
t
i, α

t
−i) +

ϵ

4
(4)

(1) comes from that αt
−i → α−i and that Ui is continuous. (3) comes from that (αt

i, α
t
−i) →

(αi, α−i) and that Ui is continuous.
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The above result contradicts αt
i ∈ Bi(α

t
−i). Thus, we proved that Bi(·) has a closed graph,

so B(·) also has a closed graph.
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